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Abstract~ The existing solutions for interfacial cracks in bimaterial media obtained from the contact
model and oscillatory model were compared. The oscillatory near tip stress field was found to agree
very well with that of the contact model except for the extremely small contact zone. Using the
oscillatory solution. Mode I and Mode II "strain energy release rates" for finite crack extensions
were obtained in terms of the stress intensity factors and the assumed crack extension !lao Finite
elements in conjunction with the crack closure method were used to calculate these "strain energy
release rates" from which accurate stress intensity factors were obtained. An alternative and efficient
method based on crack surface displacement ratio was also introduced to obtain stress intensity
factors. Non-oscillatory (!la-independent) Mode I and Mode II "strain energy release rates" were
proposed to provide an alternate measure of fracture mode mixity or to be used as a fracture
criterion for interfacial cracks. t-\ 1997 Elsevier Science Ltd

I. INTRODUCTION

The problem of interfacial crack between two dissimilar isotropic materials was first inves
tigated by Williams (1959) who performed an asymptotic analysis of the elastic field at the
tip of an open crack and found that the stress field possesses an oscillatory character of the
type r- 1/2 +ir., where r is the radial distance from the crack tip and I:: is the bimaterial constant.
England (1965) showed that this kind of oscillation is physically inadmissible since it
predicts that the upper and lower surfaces of the crack should wrinkle and overlap near the
end of the crack. The zone over which the solution predicts overlapping of materials is very
small in comparison with the length of crack for tensile loading. However, it could be large
for shear loading (Comninou, 1978). Rice and Sih (1965) applied the complex variable
technique of Muskhelishvili combined with eigenfunction expansion to explicitly obtain the
expression of stress components in the vicinity of an interfacial crack tip.

In the late seventies, Comninou (1977, 1978, 1979) proposed the contact zone model
which recognized the unilateral nature of the crack problem. Because of the extremely small
size of the contact zone near the tip, Comninou's solutions from a direct numerical method
for a singular integral equation is only good for some extreme mismatches in elastic
constants. Gautsen and Dundurs (1987, 1988) showed the integral equation formulated by
Comninou could be solved exactly. They noted that the value of the stress intensity factor
they obtained agreed well with the numerical result given by Comninou and Schmueser
(1979) for the crack tip with large contact zone, while the agreement was poor for the crack
tip with small contact zone. However, their solution procedure is exceedingly complicated.
Subsequently, Gautsen (1993) obtained simple asymptotic approximations to the quantities
of physical interest such as the size of contact zone and the tractions in the plane of the
crack.

Although the Comninou contact zone model may provide the only valid mathematical
solution of the true interface crack in the context of LEFM, it is impractical to search for
fracture design parameters characterizing the failure on the basis of the contact zone model
because of its extremely small contact zone size. Moreover, the elastic interfacial crack
solutions that allow interpenetration of the crack surfaces near the crack tip do nevertheless
describe near-tip state when the size of the zone is much smaller than the crack length. As

2595



2596 C. T. Sun and W. Qian

stated by Rice (1988), the actual field in the small scale nonlinear or contact zone case is
uniquely characterized by a complex elastic stress intensity factor, even though the elastic
solution is not correct in that zone.

In the present study, existing solutions for bimaterial interfacial cracks based on both
oscillatory model and contact model are compared. The near tip stresses and the sizes of
the contact zone and stress oscillation zone are investigated. Alternative expressions for the
interfacial crack mode mixity are introduced. Due to the oscillatory nature of the stress
and displacement fields at the crack tip, the Mode I and Mode II strain energy release rates
do not exist. However, the crack closure integrals can be evaluated for a finite crack
extension from which the stress intensity factors can be derived. Besides, the ratio of stress
intensity factors can also be evaluated alternatively from the crack surface displacement
ratio. With these approaches, the finite element method can be used efficiently to calculate
stress intensity factors for general geometries and loading. Numerical results are presented
to show the accuracy of these techniques.

2. STRESS INTENSITY FACTOR AND NEAR TIP STRESS FIELD

There are many definitions of stress intensity factors depending on the solution forms
selected for the interfacial crack problem (e.g. Rice and Sih, 1965; Malysev and Salganik,
1965; Hutchinson et al., 1987; Sun and Jih, 1987). Most of these definitions differ by either
a phase factor or a constant.

Hutchinson et al. (1987) introduced a complex K = K,+iK" in such a way that, along
the interface ahead of the crack tip, stresses are given by

where

1 [(K1 I ) ; (K2 1 )J£ = -In - + - I - + -
. 2n J..l, J..l2! J..l2 J..l1 .

(I)

(2)

For the interface crack of length 2a subject to remotely uniform stresses (J~ and (J':',., the
complex stress intensity factor by Hutchinson et al. (1987) is

K ( X . CYC)(1 2' )(2 )-IC Ch = (In+UJn + 1£ a V na. (3)

This stress intensity factor is related to the complex stress intensity factor K, proposed by
Rice and Sih (1965) as

(4)

Both Kh and K, contain a crack length-related phase term (2a) -;1 giving rise to a complex
dimension. Consequently, the stress intensity factor becomes a function of the unit that
measures the crack length.

Malysev et at. (1965) introduced the stress intensity factor by expressing the crack tip
stresses as

(arr+iax\)o~o = Km(r!2a)II!~.

For the interface crack of length 2a subject to remotely uniform stresses a~; and a';;,

Km = (a;'; + i(J~r)(1 +2i£)) na.

(5)

(6)

The complex stress intensity factor K, introduced by Sun and Jih (1987) is related to K m as
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K = Km / cosh(m:).

The relationship between K h and K, is

Kh = K,(2a)-;' cosh(ne).
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(7)

(8)

Both Km and K, remove the ambiguity of dimension by excluding the term (2a) -;1 and
both have the same dimension as classical stress intensity factor. However, the fact that
(2a) -;, is removed from the definition of the stress intensity factor and therefore has to be
included in the angular distribution function of the field solution avoids the crack length
unit effect in the stress intensity factor but leads to a situation where cracks with the same
stress intensity factor but different lengths have different near-tip fields. Nevertheless, all
above definitions of stress intensity factor are acceptable as far as the near-tip state is
concerned. In addition, these definitions are related to each other. Henceforth, K, will be
adopted and replaced by K for simplicity in the following sections.

In order to confirm the validity of the elastic oscillatory solution for the interfacial
crack in the context of small scale contact zone concept, we consider the near-tip stress
fields for a two-dimensional infinite medium with a center crack of size 2a subject to
remotely uniform tensile stress 0';; given by Sih and Rice (1965) from the oscillatory model
by Gautsen and Dundurs (1987) from the contact model. The asymptotic crack tip stresses
along the interface ahead of the crack tip from the oscillatory solution are

where

O'I~ [ ( X) (X )JO'IT = J2x/a cos dn 2a -2esin eln 2a

0' ;;. [. ( x ) (X )J
O"T = J2x!a Sill dn 2a + 21' cos eln 2a

(9)

(10)

{
3-4V

K
j

= (3-V;)!(1+V)

for plane strain

for plane stress

Here, J1 is shear modulus, v is Poisson's ratio and subscripts I and 2 denote upper and lower
materials, respectively.

The exact solution from the contact model was given by Gautsen and Dundurs (1987)
as

where

(11 )

(12)

and

(
I +13)130 = In I - 13 ' t=lFf]
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fJ = f.l,2(KI-I)-f.I,)(K2- 1)
f.l,2(K 1 +1)+f.I,l(K2+ 1)

(13)

is one of the two Dundurs parameters. All other parameters in (11) and (12) can be found
in the Appendix. Note that f3 is also related to c; as c; = (1 /2n) In(1+ f3) /(1- f3).

The log~log plot of the normal and shear stresses ahead of the crack tip in the remote
tension field from the contact model and the oscillatory model are shown in Fig. 1 for
f3 = 0.2 and f3 = 0.5, where f3 = 0.5 stands for the largest mismatch of elastic constants.
From the plots in Fig. I, it is evident that solutions from both models agree extremely well
beyond x/a = 10- 4

, except for the normal stress associated with f3 = 0.5. For this case, the
normal stresses from the two models agree up to x/a = ro ;:::; 2.51 . 10- 4

• This value turns
out to be the size of the oscillation (or overlap) zone for the crack-tip normal stress.

Let ro and r~ denote the oscillation zones of normal stress and shear stress, respectively.
Without loss of generality, we assume c; > O. The oscillation zone size ro for the normal
stress UIT can be determined by finding the largest value of x at which dUll! dx = O. We
obtain

ro = 2aexp ( - ~). (14)

It is not difficult to show that ro is the same as the overlap zone in which the crack surfaces
interpenetrate.

Similarly, by letting dUxJ dx = 0 along with eqn (I), we find the oscillation zone r~ for
the shear stress as

r~ = 2aexp ( -~). (15)

From eqns (14) and (15) we can see that the size of the oscillation zone for the shear stress
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model and the contact model.
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Table I. The comparison of oscillation zone and contact zone for different (J~)(J ~, ratios and v, = v, = 0.3

a.'~~./(J ~~ = 0.0
ro/la r,/2a

Overlap Contact

(J~\,/(Jl~ = 0.5
ro/2a rc:i2a

Overlap Contact

(J~;./(Jlf;. = 1
ro,/2a rc /2a

Overlap Contact

5
10

100

1.923 x 10'
1.065 X 10- 7

2.032x 10- 6

1.057 x 10-'
5.899 x \0 '
1.137xlO-6

8.820 X 10- 7

1.494 x 10 '
1.194 X 10- 4

4.847 x 10- 7

8.273 x 10 6

6.682 x 10- 5

6.201 x 10·'
4.615xlO- 4

2.016 x 10 3

3.408 x 10-'
2.556 x 10 4

1.128 x 10- 3

is much smaller than that for the normal stress. This feature is noted in Fig. I. Specifically,
for f3 = 0.5, we have rola = 2.51'10-\ r'6la = 3.15 'lO- g

, while for f3 = 0.2,
fo/a = 5.34'10- 11 and f'6la = 1.44'10- 21

• Thus, except for extreme mismatch cases, the
oscillation zone is extremely small as compared with the crack size. In other words, the
near-tip solutions from the oscillatory model and the contact model are practically identical
except for an extremely small region near the crack tip. This finding also justifies matching
asymptotic expressions of nonlinear models for the neartip zone (Bui, 1994).

3. OSCILLATION ZONE AND CONTACT ZONE

In general, the oscillation zone from the oscillatory model and the contact zone from
the contact model are quite different. For illustration, consider an infinite bimaterial
medium with a center interfacial crack 2a subject to remotely uniform normal and shear
stresses. Let

where the phase angle is given by

(J-:' + i(J~, = Te"iJ (16)

Rice (1988) estimated the contact zone by the oscillation zone ro from the oscillatory
solutions as

(17)

It is noted that the contact zone size for a given bimaterial medium estimated according to
eqn (17) is solely dependent on t/J. The contact zone f, from the contact model was given
by Gautsen (1993). Both results are shown in Table 1 for three different loading conditions.
It is noted that the Rice's estimation f o is approximately twice the true contact zone rC"
Nevertheless, the value roprovides a convenient estimate of the contact zone.

It is necessary that restrictions be imposed on the contact zone size in order that the
small scale contact concept may be applied. From Sun and Jih (1987), the near-tip relative
displacement along the crack surfaces is

(18)

(19)

where
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(20)

(21 )

We estimate the contact zone size by adopting rowhich is the largest r at which the relative
normal displacement given by (18) vanishes, i.e.

Equation (22) together with (20) and (21) yields

[
I ( (K1 + 21; . KII ) )Jro = 2aexp ~ tan-I K

II
-21;' K[ -n .

The above expression being in terms of K1 and KII is more general than that of (17).
For an infinite bimaterial medium with remote loading, we have

K] = vi na[(J~ - 280':;.]/ cosh(nl;)

KII = vlna[(J~+2e(J:;·]/cosh(nl;).

(22)

(23)

(24)

(25)

Substitution of eqns (24) and (25) into eqn (23) leads to eqn (17) obtained by Rice (1988).
Redefining the phase angle t/J as

we can rewrite eqn (23) as

ro [l( -I (1+2etant/J) )J~=exp - tan· -n .
2a I; tant/J-21;

(26)

(27)

The value of ro/2a has to be less than a certain value where the small scale contact concept
can be applied. To ensure that the crack tip state is K-dominated, Rice (1988) suggested
that ro/2a ~ 0.01, or equivalently,

I +2e tan t/J
--~2 ~ tan(dnO.OI).
tan", - I;

4. CALCULATION OF STRESS INTENSITY FACTORS USING FINITE ELEMENT
ANALYSIS

(28)

Classical methods for solving the stress intensity factor for the interfacial crack prob
lems are limited to a few special cases due to the inherent mathematical difficulties. Numeri
cal methods such as the finite element method are needed to calculate the stress intensity
factors for interface cracks in bodies of finite dimensions under general loading conditions.
Because of the extremely small oscillation (or contact) zone near the crack tip, the use of
regular finite elements is obviously not practical. Lin and Mar (1976) employed a special
bimaterial crack element to model the crack tip region. This crack element was derived
based on the interfacial crack tip stress field and the hybrid formulation. Matos et al. (1988)
proposed a method for calculating the stress intensity factor based on the evaluation of the
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J-integral, and individual stress intensities can be obtained from further calculation of J
perturbed by small increments of the stress intensity factors. In the following, two efficient
methods are introduced to obtain the stress intensity factors from finite element analysis.

4.1. Energy method
A finite element-based crack closure method has been shown to be very efficient in

calculating the strain energy release rate for cracks in homogeneous media (Rybicki and
Kanninen, 1977; Raju et al., 1988; Jih and Sun, 1990). The stress intensity factor can be
derived from the strain energy release rate using the relation between these two quantities.
For bimaterial interfacial cracks, however, the strain energy release rates for Mode I and
Mode II do not exist due to their oscillatory nature (Sun and Jih, 1987; Raju et al., 1988).
Thus, no converged strain energy release rates GI and Gil can be calculated using finite
element method with the crack closure method.

Ifwe allow a finite crack extension!1a (and thus a finite crack closure length) in Irwin's
crack closure integrals, i.e.

- 1 f"'"GI = 2!1a 0 O'J,(x,O)!1u,(!1a-x,n)dx

- 1 f"'"GIl = 2!1a 0 O',,(x,O)!1u,(!1a-x,n)dx

(29)

(30)

then, these integrals can be evaluated without ambiguity. Indeed, Sun and Jih (1987)
obtained these finite extension strain energy released rates as

(31 )

(32)

where

(33)

is the total strain energy release rate and

A R = Re(A)

AI = -fm(A)

[
!1aJ - 2"

A=B 
4a

/;;[1 J [1 JB = v
2

"2 +ie r "2 -ie jr[l-ic]

cosh(ne,') [KI + I K2 + IJ[ !1aJc= ~-+~- 1+-
4(l+4e2)n /11 /12 2a

D=~[K1+1 + K2+ 1J.
16 /11 /12

In the above quantities, r is the gamma function and Re( ) and fm( ) denote the real part
and imaginary part of a complex quantity, respectively. By solving equations (31) and (32)
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for K1 and K1b and neglecting the negative solution for Kh we obtain the stress intensity
factors in terms of GJ and GIl as

(34)

(35)

where

The relations in (34) and (35) indicate that, for one set of G1 and GIl, we may have two
sets of solution for K1 and KII • However, there is only one set of K1 and KII which is
physically meaningful. We can extract the correct K1 and KII guided by conditions on the
crack surface displacements.

We assume that the I'!.a selected for calculating GJ and GIl satisfying I'!.a > ra, where ra
is the size of oscillation zone. Therefore, the relative normal crack surface displacement
must be positive, while the sign of relative tangential crack surface displacement I'!.ux can
be determined easily from the finite element result. Hence, the displacement conditions for
selecting the roots of K1 and K II for interface cracks are

l'!.ur(l'!.a) > ° and sgn(l'!.u\): determined by FEA.

In other words, from eqns (18) and (19), the condition for selecting K1 and KII are

(36)

For c = 0, there is only one pair of K 1 and KII .

4.2. Displacement ratio method
The stress intensity factors can also be obtained through their relations with the neartip

displacements as given by eqns (18) and (19). As shown by Matos et al. (1988), the stress
intensity factors obtained directly from these relations are not reliable. Indeed, depending
on the location at which these crack surface displacements are taken, the stress intensity
factors may vary appreciably. Matos et al. (1988) resorted to the use of the J integral to
aid the selection of the location of crack surface displacements to produce the optimal
result.

Recognizing that the individual crack surface displacements, I'!.u, and I'!.u r obtained
from FEA may not be accurate, but the ratio l'!.u)l'!.ur seems to be more accurate, we
propose that this ratio be used to determine the ratio KillK1•

Using the eqns (18) and (19), the ratio of KII/K1 can be expressed in terms of dis
placement ratio I'!.ur/ I'!. ,U\ as

KII HI -H2 X l'!.ur!l'!.u\

K[ H 2 +H1 xl'!.ur/I'!.u,·
(38)

Individual stress intensity factors KJ and KII can be obtained from eqns (33) and (38). It is
easy to see that the displacement ratio method is more convenient to perform than the
energy method.
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5. MODE MIXITY

Due to the oscillatory singularity in the near tip stress field, K, and Ku for interfacial
cracks cannot be uniquely associated with Mode I and Mode II fracture as defined in
homogeneous media. Nevertheless, K, and Ku still represent two modes of fracture action
and their relative amount of participation in fracture can be reflected by the mode mixity
angle defined by

-1 (Im(K))ifiK = tan Re(K)' (39)

If we adopt a definition of stress intensity factor that includes the phase effect of crack
length such as Hutchinson et al. (1987), the mode mixity ifiK would be ambiguous due to
the nature of oscillatory singularity of the interfacial crack. In order to define the mixed
mode fracture toughness unambiguously, Rice (1988) suggested a definition of stress inten
sity factor of the classical type denoted by K, + iKu which circumvented these difficulties,
I.e.

(40)

where f is chosen to be independent of the overall specimen size and specimen types. It is
easy to see that K] + iKu obtained at one f can be converted to those at a different f. Hence,
there are no restrictions in the selection of f. It is readily seen that if f is chosen to be 2a,
then the definition of (40) becomes identical to that of Sun and Jih (1987) except for a real
constant factor cosh 1[8 (see eqn (8)).

The mixed mode fracture condition can be given as

(41)

(42)

The above fracture criterion was suggested by Hutchinson (1990) for the case [; = 0 for
which the mode mixity ifiK can be unambiguously defined in terms of Kh . When [; = 0, G,
and Gil are well defined and the mode mixity can be also fully expressed in terms of the
strain energy release rates as

-1 (Gil)ifiG = tan c:' (43)

However, the mode mixity cannot be expressed for bimaterial interface cracks in terms of
the ratio of Gil and G, due to their t!a dependency and their nonconvergent nature (as l1a ~
0). In view of the foregoing, we rewrite the finite extension strain energy release rates G,
and Gil in (31) and (32) as

, 1 C1B1Gl (l1a) (l1a)JG]=2G+~ cos(O-¢)cos 2£1n
4a

+sin(O-¢)sin 2£in
4a

, 1 C1B1Gl (l1a) (l1a)JGil =2G-~ cos(O-¢)cos 2[;ln
4a

+sin(O-¢)sin 2[;ln
4a

where 0 and ¢ are defined by

(44)

(45)
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(46)

respectively. We introduce the !!a independent quantities GJ and GIl by extracting the
magnitude of the oscillation terms in eqns (44)-(45) and neglecting the !!a terms in C for
!!a « I. Thus,

- I C1BIG
G, = 2. G + -----n-[ cos(e - ¢) + sinCe - ¢)]

_~ J2C1BIG (e-A._~)- 2 G+ D cos 'I' 4

- I C1BIG
GIl = 2G-Li-[cos(e-¢)+ sin(e-¢)]

(47)

(48)

Solving eqns (44) and (45) for (e-¢) and substituting it into eqns (47) and (48), GJ and
GIl can be expressed in terms of G1and Gll as

G-~G J2C1BIG ( !!a ~ -I (GI-Gll))
[ - 2 + D cos 2idn 4a - 4 + cos 2C1BIG

~ ~ -
_ I ,j2CIBIG ( !!a n _I (G1-Gll))

Gll = 2. G-- D cos 2idn 4a - 4: + cos 2C1BIG'

(49)

(50)

Using the relations (49) and (50), G1 and Gll can be obtained through the calculation of G)
and Gil by the crack closure method. Meanwhile, the mode mixity can also be unam
biguously represented by

_[(Gll)!j;c = tan G
1

'

The mode mixity quantities !j;K and !j;c are related by

. _ D-2J2C1BI cos(e-¢-nj4)
tan!j;(; - I •

D+2v 2C1BI cos(e-¢-n/4)

(51)

(52)

Note that, in (52), ¢ is a function of !j;K' Hence, the fracture criteria (41) and (42) can be
expressed alternatively in terms of G and !j;c, or G, and Gll.

6. NUMERICAL RESULTS

By use of eqns (35) and (36), the stress intensity factors K J and K ll can be obtained
from GJ and Gil which can be calculated using finite elements with the aid of the crack
closure method. The following numerical examples are selected to evaluate the accuracy of
this approach. The present finite element calculations were carried out with the ABAQUS
code. The eight-node isoparametric element was used for the analysis. The modified crack
closure method, based on the nodal forces and displacements, was used to compute the
finite extension strain energy release rates G1 and Gll.
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Fig. 2. An infinite bimaterial panel with a center crack under combined loading.

Table 2. Stress intensity factors for 100 x 100 plane stress panel subject to tensile and shear loading

K, K"

£,/£, (J~I'/(J~ Exact Energy method Error (%) Exact Energy method Error (%)

0 1.6982 1.6976 0.04 -0.3185 -0.3195 0.30
10 0.5 1.8575 1.8565 0.05 0.5306 0.5319 0.25

1.0 2.0167 2.0175 0.04 1.3797 1.3771 0.19

0 1.6649 1.6642 0.04 -0.3790 -0.3793 0.08
100 0.5 1.8544 1.8530 0.07 0.4535 0.4564 0.66

1.0 2.0439 2.0456 0.09 1.2859 1.2815 0.34

The first example considered here is a finite center crack between two dissimilar
isotropic materials in an infinite panel subject to both remotely uniform normal and shear
stresses as shown in Fig. 2. For combined tensile and shear loading, the complete panel is
considered. The size of the panel is 100 x 100 length unit with a finite crack of 2 length unit
(a = I); f..a/a is chosen to be 0.01. The ratios of elastic moduli of the two materials
considered in the analysis are vllv2 = I and Ell£2 = 10 and 100. A state of plane stress is
assumed. Comparison between the present calculations from the energy method and the
analytical solution for a bimaterial medium derived by Rice and Sih (1965) is shown in
Table 2. It is found that for K[ the average error is less than 0.1 and 0.6% for K II . The
relatively higher error for K II is believed to be purely numerical resulting from a small GIl
value. The corresponding strain energy release rates G1 and Gil obtained from the present
calculation and the analytical solutions in (31) and (32) are shown in Table 3. It is also

Table 3. Strain energy release rales for 100 x 100 plane stress panel subject to tensile and shear loading

G, Gil
G

Exact F.E.M. Error Exact F.E.M. Error error
£,/£, (J;-l./ (J 1/) eqn (31) present (%) eqn (32) present (%) (%)

.-----_.

0 12.244 12.246 0.03 4.176 4.165 0.28 0.05
10 0.5 5.982 5.963 0.31 14.543 14.550 0.05 0.06

1.0 1.808 1.824 0.91 31.032 30.994 0.12 0.06

0 94.147 94.120 0.03 53.084 53.088 0.14 0.07
100 0.5 35.042 34.766 0.79 148.99 149.15 0.10 0.07

1.0 2.479 2.637 6.36 291.98 291.62 0.12 0.07
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Table 4. Relative error of stress intensity factors obtained using displacement ratio method
for EllE, = 100 and (J~;!(J:, = 1.0

Element number First Second Third Fourth Fifth

x/a 0.01 0.02 0.03 0.04 0.05
Error for KI (%) 2.72 0.67 0.37 0.24 0.13
Error for Kll (%) 6.46 1.54 0.82 0.48 0.19

P/2b P/2b

111 11

----- ---------
112" h

h2

~(~ ~(~
Fig. 3. A four-point bending beam with two symmetrical interface cracks.

observed that errors in the finite extension strain energy release rates are below 1%, except
for very strong mismatches in elastic constants coupled with large shear loading. However,
as seen from Tables 2 and 3, the large error in one of the strain energy release rates does
not affect the high precision in K] and K Il .

The displacement ratio method was also used to calculate the stress intensity factors
for the above example. Crack surface displacements at various locations were taken to
compute the displacement ratios. It is shown in Table 4 that errors for both K, and KIl are
less than 1% if the nodal displacements are taken at least two elements away from the crack
tip.

The second example is a prenotched bimaterial beam in flexure shown in Fig. 3
originally considered by Matos et al. (1988) and by Suo and Hutchinson (1990) based on
a beam model. Following the convention in Matos et al. (1988), the height h of the beam
is chosen as the characteristic specimen dimension. In Tables 5-7, the stress intensity factors

Table 5. Comparison of normalized total strain energy release rate and stress intensity factors for a prenotched
bimaterial beam in flexture with different EIIE, ratios. \'1 = V, = 0.3. a/I = 0.625 and hi/a = 2.5

I
10

G*
Matos ('I al.

10.4700
6.4626

Present

10.5027
6.5094

Kt
Matos el al.

2.4498
0.7662

Present

2.4496
0.7614

K*I
Matos el al.

2.1196
0.8115

Present

2.1219
0.8198

G* = Gh'/r'E,P'I'(1-r;).
K* = K '(h/2~)" hhJ

' cosh(m:)/PI.

Table 6. Comparison of normalized total strain energy release rate and stress intensity factors for different material
mismatches in a prenotched bimaterial beam in flexture with a/I = 0.625, hila = 5

G* K~ K~

'X {i Suo el al. Present Suo el at. Present Suo el al. Present

0 0 10.5000 10.5027 2.4497 2.4496 2.1210 2.1218
-0.8 -0.2 6.8077 6.8091 0.8429 0.8412 0.8413 0.8432

'X = (J.l,(1'1+ 1)-J.lI(I',+ 1))/(J.l,(I'I+ l)+J.lI(I',+ I)).
G* = Gb'/r'E,;P'I'(1-r;).
K* = K·(h/2~)"b/r12cosh(7tf,)!PI.
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Table 7. Normalized total strain energy release rate and stress intensity factors for a double cantilever beam with
different E,iE, ratios, VI = V, = 0.3, a = 1= 10 and h = 2

C*
Energy method

Kt K~

Displacement ratio method
Kt K~

1
50

100

7.7233
182.96
360.77

2.7791
2.6002
2.5822

0.0
-0.9995
-1.0414

2.7791
2.5991
2.5804

0.0
- 1.0021
-1.0458

C* = Ch'hJE2/p212(l-v~).

K* = K·(h/2a)"hhJ'cosh(ne)Pl.

Crack Crack tip

Fig. 4. Finite element mesh for right half of a bimateria1 beam.

are also normalized by PI!hh32
, and the strain energy release rates by p 2 f(l-vD!h 2h3E2

where P is the applied load, I is the spacing between the inner and outer loading points, h
is the width of the beam and E 1 the elastic modulus of the top layer. The plane strain
condition is assumed.

Due to geometric and elastic symmetries with respect to its midsection, only the right
half of the beam is modeled for the analysis. The finite element mesh used is shown in Fig.
4. The size of the smallest element of the crack tip is 0.01 length unit, and the inner loading
point is at a/I = 1.5 for all the cases. From Table 5 we can see that the differences between
the results of Matos et al. (1988) and present analysis based on the energy method are less
than 1%. The comparison between the solution by Suo and Hutchinson (1990) and present
results is presented in Table 6. OveralI, it is seen that the results from the present analysis
based on the energy method are in excellent agreement with those from the previous
methods.

The last example is a double cantilever beam subject to a pair of opposite point loads
as shown in Fig. 5. The same finite element mesh as in Fig. 4 was adopted for the analysis.
The results for Gs and Ks based on the energy method and the displacement ratio method
are listed in Table 7 for three different elastic mismatches. It is seen that the differences
between these two methods are very small (within 0.5%). Also interesting to note is that

P/2b

111 11 h

-------------- - r--

a
"2" h

2r
P/2b

Fig. 5. A bimaterial double cantilever beam.
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substantial shear mode (KlI ) IS induced by mode I type of loading if elastic material
mismatches are large.

7. CONCLUSION

From the comparison of the near tip stress fields for interfacial cracks in bimaterial
media obtained from the contact model and the oscillatory model, we conclude that, except
for the extremely small contact zone near the crack tip, the two solutions are basically
identical. This justifies the use of the oscillatory model for the fracture analysis of interfacial
cracks for a small contact zone. The Mode I and Mode II strain energy release rates G] and
Gil for finite crack extensions can easily be obtained from the finite element analysis using
the crack closure method. The stress intensity factors derived from G] and GII are very
accurate. It was also shown that the ratio of stress intensity factors can also be obtained
very accurately from the crack surface displacement ratio. This ratio in conjunction with
the total strain energy release rate can be used to evaluate the stress intensity factors with
excellent results. The non-oscillatory quantities G] and Gil derived from G] and GII can be
used to give an alternative expression for the interfacial crack mode mixity. Thus, the
fracture criterion can be given in terms of the total strain energy release rate G and the
ratio GII/G] with no need to calculate the stress intensity factors.
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APPENDIX

The parameters 5" 5], \t', and IF, in eqns (II) and (12) are given by Gautsen and Dundurs (1987) and listed
here as

5, (w) = 2 sin [Po(rr - w)/(2A)]Eo(w)/[I- Eo (w)]

,\c] (w) = 2Eo(w) { cos [Po (rr - w)/(2).)]- E,) "(w») i[1 - Eo(w)]

where

Eo (w) = exp [-rr(rr- w),U]

w = J.qo(x)

w, = Poqo (x)i2

qo (x) = 2irr log {2[x+ (x' +k')' ']} i{k[l + (x' + I)' ']} +o(k'log(k))

k' = 16exp {-(rr 2/po)-[(2irr) tan-' (Poirr) + III


